

Application of a Heat Integrated Postcombustion CO₂ Capture System with Hitachi Advanced Solvent into Existing Coal-Fired Power Plant

Award Number: **DE-FE0007395 DOE Project Manager: José D. Figueroa**

Jim Neathery, Ph.D. and Kunlei Liu, Ph.D.

Power Generation and Utility Fuels Group University of Kentucky, Center for Applied Energy Research <u>http://www.caer.uky.edu/powergen/home.shtml</u>

Email: jim.neathery@uky.edu

Main CAER Facility Located Offcampus in Lexington, KY (est. 1977) 162 employees, \$12M Budget

UK's first LEED Research Laboratory \$19.8 M Renewable Energy Lab (finished in June)

- Project Funding:
 - \$14.55M from DOE NETL
 - \$ 4.73M cost share from team, KY DEDI and CMRG
 - \$0.78M from team
 - \$3.65M from KY DEDI
 - \$0.3M from Carbon Management Research Group (CMRG)
- 4-year project consisting of 4 budget periods

- Overall Performance Dates (no-cost extension is in progress):
 - BP-1 October 1, 2011 to August 31, 2012
 - BP-2 September 1, 2012 to January 31, 2013
 - BP-3 February 1, 2013 to January 31, 2014
 - BP-4 February 1, 2014 to January 31, 2016

Project Participants

Partner & Subcontractor

Subcontractor

Team Members

- EPRI
 - Abhoyjit Bhown
 - Dick Rhudy
 - George Booras
 - Andrew Maxson
 - David Thimsen
 - Ron Schoff
- HPSA
 - Song Wu
 - Sandhya Eswaran
- KMPS
 - Tom Schafer
 - Stan Lam
 - Allyson Chazen

LKE

- John Moffett
- David Link
- Jeff Fraley
- Donald Duncan

SMG

- Sara Smith
- Clay Whitney

UKRF

- Kunlei Liu
- Jim Neathery
- Joe Remias
- Lisa Richburg
- Heather Nikolic
- Jesse Thompson
- Others

Worley-Parsons

- Jacqueline Bird
- Mike Bartone

- 2) To provide scale-up data and design information for commercial-scale projects;
- 3) To demonstrate a heat-integrated post-combustion CO_2 capture system with advanced solvent; and
- 4) To collect information/data on material corrosion and identify appropriate materials for a 550 MWe commercial-scale carbon capture plant.

Technology Fundamentals

Engineering design, build and install an advanced CO_2 capture system into an existing PC power plant at a 0.7 MWe slipstream scale (~15 TPD CO_2)

Three novel processes will be designed and integrated: 2-stage solvent striping, cooling tower desiccant, and Hitachi solvent

1. Two-stage Stripping:

- Increase solvent working capacity by providing a secondary air-stripping column following the conventional steam stripping column.
- Air stripping stream sent to boiler as combustion air to increase flue gas P_{CO_2} exiting boiler

2. Integrated Cooling Tower:

- Use regenerated CO₂ stream waste heat to dry liquid desiccant
- Liquid desiccant is used to dry cooling tower air → Improved power plant cooling tower and steam turbine efficiency

3. Advanced Hitachi Solvent:

- Primary amine analogous to MEA

Background: The Effect of CO₂ UK Concentration at Absorber Inlet

Background: The Effect of CO₂ UK Concentration at Absorber Inlet

Background: Ambient Relative Humidity at Turbine Output

Background: Hitachi Advanced Solvent (H3-1)

UK

- The design, start-up/commissioning of a 2MWth test facility (1400cfm);
- Parametric investigation and long-term verification;
- New corrosion resistance coatings for material used in CCS system (access ports needed in scrubber and stripper areas);
- Solvent degradation (liquid product and gaseous emissions from CCS);
- A series of transient tests to quantify the ability of the carbon capture system to follow load demand.

Test Site: E.W. Brown

UK

- Located at 815 Dix Dam Rd, Harrodsburg, KY 40330
- 40 miles from UKy-CAER

- Unit 1: B&W wall fired sub-critical boiler with Westinghouse 110 (gross) MW reheat turbine (1450 psig/1000°F/1000°F), ESP, and Low NOx burners;
- Unit 2: CE t-fired sub-critical boiler with Westinghouse 180 MW (gross) reheat turbine (1800 psig /1000°F /1000°F), ESP, Low NOx burners, and OFA;
- Unit 3: CE t-fired sub-critical boiler with Westinghouse 457 MW (gross) reheat turbine (2400 psig/1000°F /1000°F), ESP, Low NOx burners, and OFA.
- FGD common to all 3 units, in near future, SCR and SAM Mitigation Equipment.

Possible Test Coals During the Investigation

• Illinois/Western Ky bituminous (high sulfur)

Proximate Analysis	As-Received						
% Moisture	14.3-16.3						
% Ash	8.5-9.8						
% Volatile	34.2-36.4						
% Fixed Carbon	39.7-40.9						
BTU	10580-11111						
MAF BTU	14320-14431						
% Total Sulfur	2.77-3.52						
Sulfur Forms							
% Pyritic	1.4-1.9						
% Sulfate	0.03-0.04						
% Organic	1.4-1.6						

Ultimate Analysis	As-Received					
% Moisture	14.51					
% Carbon	60.79					
% Hydrogen	4.29					
% Nitrogen	1.31					
% Chlorine	****					
% Sulfur	3.28					
% Ash	8.5					
% Oxygen (Diff.)	7.32					
Chlorine D6721 Dry Basis µg/g 117						

Mineral Analysis	% Ignited Basis						
Phos. Pentoxide, P ₂ O ₅	0.17						
Silica, SiO ₂	41.4						
Ferric Oxide, Fe ₂ O ₃	29.79						
Alumina, Al ₂ O ₃	20.16						
Titania, TiO ₂	0.93						
Lime, CaO	1.31						
Magnesia, MgO	0.79						
Sulfur Trioxide, SO ₃	1.05						
Potassium Oxide, K ₂ O	1.89						
Sodium Oxide, Na ₂ O	0.43						
Barium Oxide, BaO	0.05						
Strontium Oxide, SrO	0.03						
Manganese Dioxide, Mn ₃ O ₄	0.04						
Undetermined	1.96						

BPs and Tasks

BP	Task	Name						
	1.0, 5.0, 9.0, 17.0	Project Management & Planning						
	2.0	System and Economic Analysis.						
1	3.0	Initial EH&S Assessment						
	4.0	Basic Process Specification and Design						
	6.0	Slipstream Site Suvery						
2	7.0	Finalized Engineering Specification and Design						
	8.0	Test Condition Selection and Test Plan						
3	10.0	System Engineering Update and Model Refinements						
	11.0	Update of EH&S Assessment						
	12.0	Site Preparation						
	13.0	Fabrication of Slip-stream Modules						
	14.0	Procurement and Installation of Control Room/Field						
	15.0	Fabrication of Corrosion Coupons						
	16.0	Slipstream Facility Erection, Start-up, Commissioning						
4	18.0	Slip-stream Test Campaign						
	19.0	Final Updater of Techno-Economic Analysis						
	20.0	Final EH&S Assessment						

CENTER FOR APPELED ENERGY RESEARCH COmbined Flue Gas Extraction Point UK

Raw Flue Gas Data at MCR-GR Unit 3							
CO ₂	% vol.	12.2					
H ₂ O	% vol.	8.9					
N ₂	% vol.						
O ₂	% vol.	5.1					
NOx @ 6% O_2 dry	Lb/mmBtu	0.452					
CO @ 6% O ₂ dry	ppmv						
$SO_2 @ 6\% O_2 dry$	ppmv	1,110.00					
NH ₃ @ 6% O ₂ dry	ppmv						
PM @ 6% O ₂ dry	mg/Nm ³						
Flue Gas Temperature	°F	300					
Flue Gas Pressure	psia						
Flue Gas Flow to CCU	WSCFH	23,180,667					

Note: Slip-stream extraction will be at the combined scrubber exit.

- Finalized budget for duration of project
- Finalized contract with UKy and DOE
- PSC with Smith Management Group (SMG)
- Several visits to Brown Station
- Finalized host site agreement with LKE
- Preliminary design with Aspen Plus complete and sent to Hitachi, EPRI, and KMPS for review
- RFP sent to KMPS for review
- Q4 2011 & Q1 2012 reports submitted to DOE
- BP1 continuation submitted to DOE
- Introduced multi-party NDA between all contributing parties
- Last stage of finalizing contracts with subs

Project Schedule

Task Name	Start	Finish	2011	н2	2012 H1	ы2	2013 H1	ыр	2014 H1	H2	2015 H1	82	2016 H1	на
UKRF Master Gantt Chart DE-FE0007395	10/3/11	1/29/16		ψ	1114	114	114	114	11.4	114	114	114	Ψ	114
1 Project Planning and Management	10/3/11	8/31/12		42		-9								
2 Detailed Update of Techno-Economic Analysis	2/1/12	8/1/12			9 —	9								
3 Initial EH&S Assessment	2/1/12	8/29/12			Ç—	-Ç								
4 Basic Process Specification and Design	2/1/12	8/29/12			Q —	-Ç								
5 Project Planning and Management	9/4/12	1/31/13				Q —								
6 Slipstream Site Survey	9/4/12	11/5/12				P P								
7 Finalized Engineering Specification and Design	9/18/12	1/2/13				φ¢.								
8 Test Condition Selection and Test Plan	9/4/12	1/15/13				Ţ								
9 System Engineering Update and Model Refinements	1/7/13	1/22/13					Ť							
10 Project Planning and Management	2/1/13	1/31/14					Ų		Ψ					
11 Update of EH&S Assessment	2/1/13	1/3/14					-							
12 Site Preparation	2/1/13	5/2/13												
13 Fabrication of Slip-stream Modules	2/1/13	7/8/13												
14 Procurement and Installation of Control Room/Field Lab Section	2/1/13	1/31/14					Ţ							
15 Fabrication of Corrosion Coupons	2/1/13	1/3/14					Ų.							
16 Slipstream Facility Erection, Start-up, Commissioning and Shakedown	7/19/13	1/29/14						-	Ţ					
17 Project Planning and Management	2/3/14	1/29/16							Ų				\$	
18 Slip-stream Test Campaign	2/3/14	1/29/16							.				φ	
19 Final Update of Techno-Economic Analysis	11/6/14	12/23/15								P		-	P	
20 Final EH&S Assessment	11/6/14	12/23/15								.		_		

- Finish the techno-economic analysis and submit report to DOE
- Finish the EH&S assessment and report
- Work with KMPS to obtain finalized design
- Prepare BP1 end report for DOE

Thank You

2012 NETL CO2 Capture Technology Meeting

July 9-12, 2012